|
您现在的位置: 中国气动马达网 >> 气动马达信息 >> 气动马达技术 >> 气动马达技术信息 >> 正文 |
气动马达的原理 |
|
叶片式气马达的原理见图1。叶片式气马达主要由定子1、转子2、叶片3及4等零件构成。定子上有进、排气用的配气槽或孔,转子上铣有长槽,槽内有叶片。定子两端有密封盖,密封盖上有弧形槽与进、排气孔A、B及叶片底部相通。转子与定子偏心安装,偏心距为e。这样由转子的外表面、叶片(两叶片之间)、定子的内表面及两密封端盖就形成了若干个密封工作容积。 图1 叶片式气马达原理图 说明:(1—定子;2—转子;3、4—叶片) 压缩空气由A孔输入时,分为两路:一路经定子两端密封盖的弧形槽进入叶片底部,将叶片推出。 叶片就是靠此气压推力及转子转动时的离心力的综合作用而保证运转过程中较紧密地抵在定子内壁上。压缩空气另一路经A孔进入相应的密封工作容积。如图42.3-1,压缩空气作用在叶片3和4上,各产生相反方向的转矩,但由于叶片3伸出长(与叶片4伸出相比),作用面积大,产生的转矩大于叶片4产生的转矩,因此转子在相应叶片上产生的转矩差作用下按逆时针方向旋转,做功后的气体由定子孔C排出,剩余残气经孔B排出。 改变压缩空气的输入方向(如由B孔输入),则可改变转子的转向。 叶片式气马达多数可双向回转,有正反转性能不同和正反转性能相同两类。图42.3-2为正反转性能相同的叶片式马达特性曲线。这一特性曲线是在一定工作压力(例如0.5MPa)下做出的,在工作压力不变时,它的转速、转矩及功率均依外加载荷的变化而变化。 当外加载荷转矩为零时,即为空转,此时转速达最大值nmax,马达输出功率为零。当外加载荷转矩等于气马达最大转矩Tmax时,气马达停转,转速为零,此时输出功率也为零。当外加载荷转矩等于气马达最大转矩的一半时,其转速为最大转速的一半。此时马达输出功率达最大值Pmax。一般说来,这就是气马达的额定功率。 说明:在工作压力变化时,特性曲线的各值将随之有较大的变化。说明叶片式气马达具有较软的特性。
1—配气阀套;2—配气阀;3—气缸体;4—活塞;5—连杆组件;6—曲轴 图42.3-4为一小型活塞式气马达的特性曲线。可见活塞式气马达也具有软特性的特点。特性曲线各值随马达工作压力的变化有较大的变化,工作压力增高,马达的输出功率、转矩和转速均大幅度增加;当工作压力不变时,其转速、转矩及功率均随外加载荷的变化而变化。其基本情况与叶片式气马达大致相同。
a)功率曲线;b)转矩曲线 摆动式气马达可分为叶片式和活塞式两类。 1、叶片式摆动气马达图5为叶片式摆动气马达原理图。有单叶片(见图5a)和双叶片(见图5b)两种。由马达体、叶片、转子(输出轴)、定子及两侧端盖组成。叶片与转子(输出轴)固定在一起,压缩空气作用在叶片上,在马达体内绕中心摆动,带动输出轴摆动,输出一定角度内的回转运动。 图5 叶片式摆动气马达 a)单叶片式;b)双叶片式 单叶片式摆动角度小于360°,一般在240°~280°左右;双叶片式摆动角度小于180°,一般在150°左右。尺寸相同时,双叶片式的输出转矩应是单叶片式摆动马达输出转矩的2倍。这种气马达由于叶片与缸体内壁接触线较长,需要较好的密封,密封件的阻力损失较大。 2、活塞式摆动气马达活塞式摆动气马达有齿轮齿条式、螺杆式、曲柄式等多种。其基本原理是利用某些机构(如齿轮齿条、螺杆、曲柄等)将活塞的直线往复运动转变成一定角度内的回转运动输出。 图6 活塞式摆动气马达 a)齿轮齿条式;b)螺杆式 图6为活塞式摆动气马达原理图。其中图6a为齿轮齿条式摆动气马达,活塞带动齿条从而推动与齿条啮合的齿轮转动,齿轮轴输出一定角度内的回转运动;图6b为螺杆式摆动气马达,活塞内孔与一螺杆啮合,当活塞往复运动时,螺杆就输出回转运动(一定角度内的摆动)。以上两种活塞式摆动马达的摆动角度可以在360°以内,也可以大于360°,可据需要设计。齿轮齿条式摆动气马达密封性较好,机械损失也较小;螺杆式密封性可做到较好,但加工难度稍大,机械损失也较大。 ![]() |
|
| 设为首页 | 加入收藏 | 联系站长 | 网站导航 | | |||
|